Answer the following question:

- (1) If $\vec{A} = \vec{\nabla} \phi$ where $\phi = z^2 x^3 y$ find $\vec{\nabla} \times \vec{A}$, $\vec{\nabla} \cdot \vec{A}$.
- (2) Evaluate $\iint_{S} \vec{F} \cdot \vec{n} dS$ in the case $\vec{F} = y\vec{i} + 2x\vec{j} z\vec{k}$ and S is the plane 2x + y = 6, $x, y, z \ge 0$ and cutting by z = 4.
- Evaluate $\int_{C} \vec{F} d\vec{r}$ where $\vec{F}(t) = (2x + y)\vec{i} + (3y x)\vec{j}$ along the curve which consists of the straight lines from (0,0) to (2,0) and from (2,0) to (3,2).

Dr.Fathi Abdessalam

Answer (1)

$$\overrightarrow{A} = \overrightarrow{\nabla} \varphi = \frac{\partial \varphi}{\partial x} \overrightarrow{i} + \frac{\partial \varphi}{\partial y} \overrightarrow{j} + \frac{\partial \varphi}{\partial z} \overrightarrow{k}$$

$$= \frac{\partial}{\partial x} \left(z^2 x^3 y \right) \overrightarrow{i} + \frac{\partial}{\partial y} \left(z^2 x^3 y \right) \overrightarrow{j} + \frac{\partial}{\partial z} \left(z^2 x^3 y \right) \overrightarrow{k} = 3z^2 x^2 y \overrightarrow{i} + z^2 x^3 \overrightarrow{j} + 2z x^3 y \overrightarrow{k}$$

$$\overrightarrow{\nabla} \times \overrightarrow{A} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3z^2 x^2 y & z^2 x^3 & 2z x^3 y \end{vmatrix} = 0$$

$$\overrightarrow{\nabla} \overrightarrow{A} = \left(\frac{\partial}{\partial x} \overrightarrow{i} + \frac{\partial}{\partial y} \overrightarrow{j} + \frac{\partial}{\partial z} \overrightarrow{k} \right) \cdot \left(3z^2 x^2 y \overrightarrow{i} + z^2 x^3 \overrightarrow{j} + 2z x^3 y \overrightarrow{k} \right) = 6z^2 xy + 2x^3 y$$

Answer: (2)

$$\varphi = 2x + y - 6$$
, $\overline{\nabla} \varphi = 2\overline{i} + \overline{j}$, $\overline{n} = \frac{2\overline{i} + \overline{j}}{\sqrt{5}}$

$$\overline{F}.\overline{n} = \left(y\overrightarrow{i} + 2x\overrightarrow{j} - z\overrightarrow{k}\right) \cdot \left(\frac{2\overline{i} + \overline{j}}{\sqrt{5}}\right) = \frac{2y + 2x}{\sqrt{5}}$$

$$dS = \frac{dxdz}{n.\dot{i}} = \sqrt{5}dxdz$$

$$\iint_{S} \overrightarrow{F} \, \overrightarrow{n} \, dS = \iint_{A} \left(\frac{2y + 2x}{\sqrt{5}} \right) \sqrt{5} \, dx \, dz = \iint_{A} (2y + 2x) dx dz$$

Where A is the rectangle in xz-plane with vertices (3,0,0).(0,0,0),(0,0,4),(3,0,4)

$$\iint_{A} (2y + 2x) dx dz = \iint_{A} [2(6 - 2x) + 2x] dx dz = \iint_{0}^{3} (12 - 2x) dx dz = 144 - 36 = 108$$

Answer (3)

$$\therefore \int_{C} \vec{F} \, d\vec{r} = \int_{C} \left[(2x + y)\vec{i} + (3y - x)\vec{j} \right] \cdot (dx \, \vec{i} + dy \, \vec{j})$$

$$= \int_{C} \left[(2x + y) \, dx + (3y - x) \, dy \right] = \int_{(0,0)}^{(2,0)} \left[(2x + y) \, dx + (3y - x) \, dy \right]$$

$$+ \int_{(2,0)}^{(3,2)} \left[(2x + y) \, dx + (3y - x) \, dy \right] = I_{1} + I_{2} \qquad (1)$$

where $I_1 = \int\limits_{(0,0)}^{(2,0)} \left[(2x+y) \, dx + (3y-x) dy \right]$ taken on the line

y = 0, dy = 0 and x various from 0 to 2

$$\therefore I_1 = \int_0^2 \left[(2x \ dx) \right] = \left[x^2 \right]_0^2 = 4$$
 (2)

and $I_2 = \int\limits_{(2,0)}^{(3,2)} \left[(2x+y)\,dx + (3y-x)dy \right]$ taken on the line joining the two points (2,0) ,

(3,2) which has an equation
$$\frac{y-0}{x-2} = \frac{2-0}{3-2}$$
 $\Rightarrow y = 2x-4 \Rightarrow dy = 2dx$

$$\therefore I_2 = \int_{2}^{3} \left[2x + (2x - 4) \right] dx + \left[3(2x - 4) - x \right] 2dx$$

$$= \int_{2}^{3} \left\{ \left[4x - 4 \right] dx + \left[10x - 24 \right] \right\} dx = \int_{2}^{3} \left[14x - 28 \right] dx = \left[7x^2 - 28x \right]_{2}^{3} = 7$$

From (3) and (2) we have $\int_C \vec{F} \cdot d\vec{r} = 4 + 7 = 11$